



# Programa de ESTRUCTURAS DE ACERO

## 1. NOMBRE DE LA UNIDAD CURRICULAR

Estructuras de acero

## 2. CRÉDITOS

8 créditos

## 3. OBJETIVOS DE LA UNIDAD CURRICULAR

La unidad curricular tiene como objetivo introducir al estudiante al diseño de estructuras de acero. Al finalizar el curso, se espera que pueda:

- 1. calcular los esfuerzos debidos al viento en estructuras típicas;
- 2. analizar y diseñar elementos estructurales sencillos de acero;
- 3. analizar y diseñar entrepisos sencillos compuestos de acero y hormigón;
- 4. integrarse en un equipo profesional dedicado al cálculo de estructuras de acero.

### 4. METODOLOGÍA DE ENSEÑANZA

El curso tendrá una carga horaria presencial de 60 h (4 h por semana), distribuidas en 36 h de clases teóricas y 24 h de clases prácticas.

Se espera que el estudiante le dedique 60 h (4 h por semana) adicionales para la realización de un proyecto grupal y para la preparación de dos pruebas individuales.

#### 5. TEMARIO

#### 5.1 Teórico

1. <u>Acciones debidas al viento</u>: consideraciones generales; velocidad característica; coeficientes y velocidad de cálculo; coeficientes de presión exterior e interior.

- 2. <u>Introducción al diseño estructural en acero</u>: propiedades mecánicas del acero; criterios de resistencia; acciones y combinaciones de acciones; cálculo elástico y plástico de las solicitaciones; consideración de las no linealidades; seguridad estructural; diseño por el método de los esfuerzos admisibles (ASD); diseño por el método de los factores de cargas y resistencias (LRFD); normativa.
- 3. <u>Barras traccionadas</u>: modos de falla; fluencia por tracción; rotura por tracción; bloque de cortante; sección de Whitmore; diseño de miembros traccionados.
- 4. <u>Barras comprimidas</u>: tipos de columnas; modos de falla; estabilidad lateral, torsional y lateral-torsional; estabilidad local; tensiones residuales; imperfecciones; diseño de miembros comprimidos; diseño de miembros compuestos.
- 5. <u>Barras flexionadas</u>: tipos de vigas; modos de falla; estabilidad lateral-torsional y soporte lateral; estabilidad del alma; resistencia a cortante; resistencia ante cargas concentradas; diseño de rigidizadores.
- 6. <u>Barras sometidas a flexión y directa</u>: diseño de miembros sometidos a flexión y tracción; diseño de miembros sometidos a flexión y compresión; estabilidad global; análisis aproximado de segundo orden.
- 7. <u>Uniones atornilladas</u>: tipos de tornillos y conexiones; aspectos constructivos; cálculo de solicitaciones en uniones con momento (método elástico); diseño de conexiones a aplastamiento; diseño de uniones a deslizamiento crítico.
- 8. <u>Uniones soldadas</u>: tipos de soldadura; soldadura de arco eléctrico; aspectos constructivos; inspección y control de calidad.

#### 5.2 Práctico

- Estudio de viento y combinaciones de acciones: presentación de la estructura a resolver (trabajo); estudio de las acciones debidas al viento; métodos de diseño y combinaciones de acciones asociadas.
- 2. <u>Correas laminadas</u>: cálculo de solicitaciones; diseño a flexión compuesta; verificación a cortante; cálculo de deflexiones; arriostramientos.
- Correas reticuladas: disposiciones constructivas; cálculo de solicitaciones y fuerzas en las barras; verificación de barras traccionadas y comprimidas; cálculo de inercia efectiva y deflexiones; normativa.
- 4. <u>Cerchas</u>: cálculo de solicitaciones; luces a considerar; diseño a directa (tracción y compresión); diseño a momento; diseño a directa y momento combinados.
- 5. Entrepisos mixtos de hormigón y acero: disposiciones constructivas; cálculo de solicitaciones; diseño a flexión según el método plástico; verificación a cortante; diseño de conectores; cálculo de inercia efectiva y deflexiones.
- 6. <u>Vigas de alma llena</u>: predimensionado; cálculo de solicitaciones; esbelteces a considerar; diseño a flexión; comprobación a cortante y ante carga concentradas; diseño de rigidizadores; cálculo de deflexiones.

- 7. <u>Pilares y bases</u>: cálculo de solicitaciones; análisis aproximado de segundo orden; verificación a compresión; verificación a momento; verificación a directa y momento combinados; diseño de la base.
- 8. <u>Uniones</u>: uniones atornilladas; aspectos constructivos; diseño a tracción y a corte; uniones soldadas; clasificación de las soldaduras; soldadura de filete; resistencia a corte; cálculo de solicitaciones en soldaduras con momento (método elástico); diseño de soldaduras; aplicación a las uniones del trabajo propuesto.

#### 6. BIBLIOGRAFÍA

| Tema – Teórico                                 | Básica          | Complementaria    |
|------------------------------------------------|-----------------|-------------------|
| 1. Acciones debidas al viento                  | [6]             | -                 |
| 2. Introducción al diseño estructural en acero | [1] [2] [3] [5] | [7] [8] [9]       |
| 3. Barras traccionadas                         | [1] [2] [3]     | [7] [8]           |
| 4. Barras comprimidas                          | [1] [2] [3]     | [7] [8] [10] [11] |
| 5. Barras flexionadas                          | [1] [2] [3]     | [7] [8] [10] [11] |
| 6. Barras sometidas a flexión y directa        | [1] [2] [3]     | [7] [8] [10] [11] |
| 7. Uniones atornilladas                        | [1] [2] [3]     | [7] [8] [9]       |
| 8. Uniones soldadas                            | [1] [2] [3]     | [7] [8] [9] [12]  |

| Tema – Práctico                                  | Básica      | Complementaria    |
|--------------------------------------------------|-------------|-------------------|
| 1. Estudio de viento y combinaciones de acciones | [5] [6]     | [7] [8]           |
| 2. Correas laminadas                             | [1] [2] [3] | [7] [8]           |
| 3. Correas reticuladas                           | [4]         |                   |
| 4. Cerchas                                       | [1] [2] [3] | [7] [8] [10] [11] |
| 5. Entrepisos mixtos de hormigón y acero         | [1] [2] [3] | [7] [8]           |
| 6. Vigas de alma llena                           | [1] [2] [3] | [7] [8] [10] [11] |
| 7. Pilares y bases                               | [1] [2] [3] | [7] [8] [10] [11] |
| 8. Uniones                                       | [1] [2] [3] | [7] [8] [9] [12]  |

#### 6.1 Básica

- 1. McCormac, Jack (2002). Diseño de estructuras de acero: Método LRFD. Ciudad de México: Alfaomega. Disponible en la biblioteca de Facultad de Ingeniería.
- 2. McCormac, Jack (1999). Diseño de estructuras metálicas: Método ASD. Ciudad de México: Alfaomega. Disponible en la biblioteca de Facultad de Ingeniería.
- 3. American Institute of Steel Construction (2016). ANSI/AISC 360-16 Specification for Structural Steel Buildings. Chicago: AISC. Disponible libremente en la web.
- 4. Instituto Nacional de Tecnología Industrial (2007). CIRSOC 308 Reglamento argentino de estructuras livianas para edificios con barras de acero de sección circular. Buenos Aires: INTI. Disponible libremente en la web.

- 5. American Society of Civil Engineers (2010). ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures. Virginia: ASCE. La información relevante es facilitada en el curso (diapositivas).
- 6. Instituto Uruguayo de Normas Técnicas (1984). UNIT 50:84 Acción del viento sobre construcciones. Montevideo: UNIT. Disponible en la biblioteca de Facultad de Ingeniería.

## 6.2 Complementaria

- 7. Segui, William (2013). Steel Design. Stamford: Cengage Learning.
- 8. Geschwindner, Louis; Liu, Judy; Carter, Charles (2017). Unified Design of Steel Structures. Hoboken: John Wiley & Sons.
- 9. Dias, Luís (2006). Estructuras de acero: conceptos, técnicas y lenguaje. San Pablo: Zigurate. Disponible en la biblioteca del Instituto de Estructuras y Transporte.
- 10. Timoshenko, Stephen; Gere, James (1989). Theory of Elastic Stability. Mineola: Dover Publications. Disponible en la biblioteca del Instituto de Estructuras y Transporte.
- 11. Ziemian, Ronald (ed.) (2010). Guide to Stability Design Criteria for Metal Structures. Hoboken: John Wiley & Sons.
- 12. American Welding Society (2015). AWS D1.1/D1.1M:2015 Structural Welding Code: Steel.

## 7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- 7.1 Conocimientos Previos Exigidos: cálculo diferencial e integral en una variable y varias variables; geometría y álgebra lineal; mecánica de la partícula y del cuerpo rígido; mecánica del cuerpo deformable; análisis de estructuras planas y tridimensionales mediante métodos analíticos y numéricos; estructura, propiedades, tecnología y ensayo de materiales; técnicas básicas de construcción; seguridad estructural y métodos de diseño; análisis y diseño de elementos estructurales sencillos de hormigón armado.
- **7.2 Conocimientos Previos Recomendados:** cálculo vectorial; cálculo estadístico y modelación probabilística; análisis no lineal de estructuras; teoría de torsión en barras; métodos computacionales aplicados al cálculo de estructuras; acciones y combinaciones de acciones; análisis y diseño de estructuras de hormigón armado.

## ANEXO A Para todas las Carreras

#### A1) INSTITUTO

Instituto de Estructuras y Transporte

## A2) CRONOGRAMA TENTATIVO

| Semana | Teórico               | Práctico              |  |
|--------|-----------------------|-----------------------|--|
| 1      | Tema 1 (3 h de clase) |                       |  |
|        | Tema 2 (1 h de clase) | -                     |  |
| 2      | Tema 2 (2 h de clase) | Tema 1 (2 h de clase) |  |
| 3      | Tema 3 (2 h de clase) | Tema 2 (2 h de clase) |  |
| 4      | Tema 3 (2 h de clase) | Tema 3 (2 h de clase) |  |
| 5      | Tema 4 (2 h de clase) | Tema 4 (2 h de clase) |  |
| 6      | Tema 4 (2 h de clase) | Tema 4 (2 h de clase) |  |
| 7      | Tema 4 (2 h de clase) | Tema 5 (2 h de clase) |  |
| 8      | Tema 5 (2 h de clase) | Tema 6 (2 h de clase) |  |
| 9      | Tema 5 (2 h de clase) | Tema 6 (2 h de clase) |  |
| 10     | Tema 5 (2 h de clase) | Tema 7 (2 h de clase) |  |
| 11     | Tema 5 (2 h de clase) | Tema 8 (2 h de clase) |  |
| 12     | Tema 6 (2 h de clase) | Tema 8 (2 h de clase) |  |
| 13     | Tema 6 (2 h de clase) | Tema 8 (2 h de clase) |  |
| 14     | Tema 6 (1 h de clase) |                       |  |
|        | Tema 7 (3 h de clase) |                       |  |
| ו כו   | Tema 7 (2 h de clase) |                       |  |
|        | Tema 8 (2 h de clase) |                       |  |

## A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

El desempeño del estudiante se evaluará mediante un trabajo grupal y dos pruebas individuales. El trabajo grupal consistirá en el diseño y proyecto de una estructura de acero simplificada y será realizado durante el semestre. Al inicio de este se fijarán las fechas para la presentación de los documentos (pliego de condiciones, memoria de cálculo y planos) exigidos. Su presentación en tiempo y forma será requisito para rendir la segunda prueba.

La primera prueba será escrita y valdrá 40 puntos. Se realizará una vez terminada la semana 7, durante el primer período de parciales. En esta prueba se evaluarán los conocimientos teóricos y prácticos impartidos durante las primeras semanas del curso.

La segunda prueba será oral y valdrá 60 puntos. Se realizará una vez terminado el curso, durante el segundo período de parciales. En esta prueba se evaluarán dos aspectos: la participación del estudiante en el trabajo entregado (defensa) y los conocimientos teóricos y prácticos impartidos durante todo el curso (prueba oral).

La tabla presentada a continuación detalla los mínimos exigidos para la aprobación del curso (que habilita a dar el examen final) y para la exoneración del examen. El examen será oral, y en él se evaluarán los conocimientos teóricos y prácticos impartidos durante todo el curso.

|                      | Total | Primer parcial | Segundo<br>parcial |
|----------------------|-------|----------------|--------------------|
| Exoneración total    | 60    | 20             | 40                 |
| Aprobación del curso | 25    | 10             | 15                 |

## A4) CALIDAD DE LIBRE

La unidad curricular no habilita la Calidad de Libre.

## **A5) CUPOS DE LA UNIDAD CURRICULAR**

El curso no tiene cupos previstos.